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Abstrectr The levels of dtastereosekxtfon resultmg from the 1,3-dipolar cycfoaddnion of chvat 
and achiral azomethfne ylrdes 2(a-c) to chrrat, unsaturated brcyck latiams Ila-0 are described m terms 
of stertc factors. 

Although azomethine ylide cycloadditions have been studied and reviewed in detail,1 the 

asymmetric variant of this useful reaction has not been as extensively explored Generally, the 

level of stereoselection achieved for mtermolecular azomethine ylide cycloadditions has been 

variable and dependent upon the proper combination of chiral dipolarophile2 or choral drpale.3 

Furthermore, to our knowledge, the prospect of obtaming high diastereoselectivities in these 

processes via double asymmetric induction4 has not been previously explored. 

We now report our preliminary results concerning the diastereofacial addition of chiral and 

achiral azomethine ylide precursors 2 to non-racemrc, unsaturated bicyclic lactams 1. The latter 

have previously been shown to be valuable templates for asymmetric [2+2]5, [2+1]6, and [4+2]7 

cycloadditrons. Optimum parameters for cycloaddition to the unsaturated bicyclic lactams were 

achreved by employing the azomethine ylide precursors 2 utilizrng conditions described by 

Achiwa.8 The levels of diastereoseleohon resulting from both single and double asymmetric 

additions to lactams 1 were then examined The chiral dipoles were each derived from R(+) and 

S(-)-o-methylbenrylamines using the method reported by Padwa.9 In this process, a catalytic 

amount of trifluoroacetic acid was used to generate the azomethine ylides In the presence of the 

unsaturated lactams producing diastereomeric mixtures of the pyrrolidine-fused tricyclrc lactams 3 
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Table 1. Cycloaddtion of Chrral and Achiral Dipoles to Chiral Bicyclic Lactams, 1. 

a determined by 1 H NMR of the crude products and corroborated by GC or isolation. 

b separable by flash chromatography (EtOAcIhexanes). 

The diastereoselectlvlties observed by the reactions of chiral bicyclic lactams 1 (a-f) with 

dipoles 2(a-c) are summarized in Table 1. Generally, the direction of cycloaddition was found to 

be dependent upon the steric requirement of the angular substituent (Fit) present in 1. Thus, 

predominant a-approach of the 1,3-dipole was observed when Ri=Me, Ph and P-approach was 

observed when RI=H (Fig. 1). 

The extent of diastereofacial selectivity was seen to be a function of the non-bonded 

interactions between the benzylic substituent (R3) of the dipole and the a-substituent (FQ) on the 

bicyclic lactam As shown in Figure 1, the phenyl group may be oriented to allow antiperiplanar 

approach to the lactam as the pi-systems of the two partners approach each other within two 

parallel planes.3a B-Approach of both chiral and achiral dipoles is hindered by the presence of 

stenc interactions (I) between the angular substituent (RI) of lactams l(a-e) and the planar pi- 

system of the dipole. However, for the (R)-dipole, @approach is further hindered by steric 

interactions (ii) that exist between the methyl substituent (GR) of that dipole and the ester moiety 

(R2) of unsaturated lactams 1(8-c). These major steric factors encountered as the transition state 

IS approached probably account for the enhanced diastereofacial preferences observed for a- 

approach (74-84% d.e.). Conversely, a-approach is also subject to hindrance by steric 

interactions (iii) between the methyl substituent (Gs) of the (S)-dipole and the ester moiety (R2) of 

unsaturated lactams l(a-c). This, therefore, would tend to destabilize this transition state relative 

to that for P-approach and accounts for the poor diastereofacial preferences (2-38% d.e ) 

observed for this pair of reactants. 
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Fiaure 1. 

(R)-Dipole: (G R = Me, GS = H) 

(q-Dipole: (G R = H, Gs = Me) 

Achiral Dipole: (G R = GS q H) 

Consistent with this proposal that the degree of diastereofacial selectivity (favoring the CL 

cycloadducts) is determined by the presence or absence of srgnificant steric interactions ii and iii 
(Fig. 1) is the observation that reactions involving a-unsubstituted lactams Id and le (R2 = H) 

with chiral or achiral dipoles gave similar diastereoselectivities (8268% d.e., Table l).t 1 

An example of the synthetic utility of tricyclic lactams (3, R=Ph) is shown below. Lactam 4 

was observed to give non-racemic bioyclic hydroxylactams 5 as a consequence of benzylic proton 

abstractionI by MeLi, followed by oxazolidine C-O bond cleavage. Conversion of 5 to a 4:l 

mixture of bicyclic lactonesl3 was accomplrshed using published procedures14 in 51% overall 

yield from 4. The major lactone 6 (R) was shown to be 93.7% 

analysis. 

e-e, by chiral stationary phase HPLC 

In conclusion, high yielding 1,3-dipolar cycloadditions of a readily available azomethine 

ylide derived from R(+)-a-methylbenzylamine to a-carboalkoxyl, unsaturated lactams derived from 

(S)-valine give good diastereofacial selectivities (7585% d.e ) as a consequence of matched 

double diastereoselection. Unsubstituted bicyclic lactams derived from (S)-valine or (S)- 

phenylglycine react with both chiral or achiral azomethine ylides to afford the corresponding 

tricyclic derivatives with high diastereoselectivity (82-88% d.e ). Further studies are in progress to 

convert these cycloadducts into non-racemic polysubstituted pyrrolidine derivatives. 
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